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Recently it has been argued that the fluctuations of the order parameter of a system undergoing a second
order transition, when considered as a time series, possess characteristic nonstochastic patterns at the critical
point. These patterns can be described by a unimodal intermittent map �critical map� and are clearly distin-
guished from colored noise. In the present work we extend the method introduced in �Y. F. Contoyiannis, F. K.
Diakonos, and A. Malakis, Phys. Rev. Lett. 89, 035701 �2002��, in order to reveal universal properties in the
deformation of the dynamics of the order parameter fluctuations when departing from the critical point. We
show that the obtained systematic change in the order parameter fluctuation pattern can be observed in the
critical region of thermal critical systems such as the mean field and the 3D Ising model. In addition, we
consider the case of order parameter fluctuations near a tricritical point and we derive an associated charac-
teristic deterministic behavior. A corresponding analysis in the Z�3� model confirms our results. Thus, the
method of critical fluctuations introduced previously and generalized here, provides us with a classification
scheme allowing for the characterization of temporal fluctuations in an observed time series in terms of critical
phenomena.
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I. INTRODUCTION

In most theoretical studies the temporal fluctuations of the
order parameter are simulated through a random walk in the
space of microstates of the corresponding system. The basic
characteristics of these stochastic processes are primarily de-
termined through the requirement of approaching thermal
equilibrium. Usually the appropriate random walks are gen-
erated applying efficient algorithms such as the Metropolis
�1�, the heat-bath or other more sophisticated approaches �for
a review see �2,3��. The obtained fluctuations are, in general,
of stochastic origin and there is no obvious connection be-
tween the simulated and the actual fluctuation time series in
a real physical system. On the other hand, exactly at the
critical point the relaxation time diverges and no character-
istic time scale describing the variation of the order param-
eter exists. This implies the appearance of temporal self-
similarity in the corresponding time series. As shown in
�4,5�, this self-similar behavior can be generated by a simple
dynamical law, named critical map �CM�, belonging to the
class of intermittent maps. The dynamics of CM introduces
in turn a critical exponent pl capturing the self-similarity of
the order parameter time series. In �5� an algorithm is devel-
oped for the calculation of this critical exponent. The appeal-
ing property of pl is that it can be determined in a straight-
forward manner using a single time series of an observable
characterizing the critical system. In addition, it can be easily
defined also in the case of phase transitions out of equilib-
rium. The purpose of the present work is to extend the analy-
sis presented in �4,5� in order to describe the dynamics of the
order parameter fluctuations in the entire critical region, i.e.,
in the immediate neighborhood of the critical point where the
relaxation time is large but finite. To achieve this, one has to

construct a simplified version of CM combining the relevant
dynamical properties with the correct reproduction of statis-
tical features of the order parameter at the critical point.
Then, as we will show below, by a simple modification of the
constructed map the description of the order parameter fluc-
tuations beyond the critical point is possible in a transparent
way. The paper is organized as follows: in Sec. II we con-
struct the aforementioned simplification of the CM giving
emphasis on its self-consistency. To illustrate the latter we
consider the case of a thermal critical system using as spe-
cific examples the mean field and the 3D Ising model. In Sec.
III we generalize the map obtained in Sec. II in order to
describe the dynamics of the order parameter as the control
parameter is decreased from its critical value �broken phase�.
In Sec. IV we show how our approach can be further modi-
fied to enable a consistent modeling of the dynamics of the
order parameter fluctuations in the case of a transition with a
tricritical point. The consistency of the proposed dynamical
map is checked using simulations of the Z�3� model, which
possesses such a critical behavior. Finally, in Sec. V we
present our concluding remarks and give a possible outlook
of our work.

II. SIMPLIFIED DESCRIPTION OF THE CRITICAL
FLUCTUATION DYNAMICS

Recently it has been shown �4,5� that near the critical
point the order parameter fluctuations, independently of the
algorithm used in the simulation �12�, develop a determinis-
tic profile, which can be described by intermittent dynamics.
Using a general parametrization of the critical effective
action it is possible to derive a one-dimensional map—
introduced in �4� as critical map—capable of reproducing
several properties of the order parameter time series, such as,
for example, the suitable defined laminar length distribution
of the critical system. The proposed dynamics have been
successfully revealed at the critical point of the 3D ferromag-
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netic Ising system using two different algorithms �Metropolis
and heat-bath� in the corresponding simulations �5�. Assum-
ing certain smoothness constraints �4� the critical map can be
simplified to

�n+1 = �n + u�n
z , �1�

where � is the order parameter �in 3D Ising model the space
averaged magnetization�, u is a parameter associated with the
coupling constant of the effective action, and the exponent z
is related to the critical isothermal exponent � through z=�
+1. Time �n� is measured in units of a resolution scale � for
which we only require that it is much smaller than the auto-
correlation time of �. The physical picture underlying Eq.
�1� is that just after the symmetry breaking leading to the
nonvanishing value of the order parameter, the vacuum state
��=0� of the system in the symmetric phase turns from a
stable fixed point of the effective interaction into a margin-
ally unstable one through a pitchfork bifurcation inducing
the aforementioned intermittent dynamics. There is a univer-
sal property valid for any trajectory of the dynamical system
�1�: in the laminar region 0����max, with �max�� 1

zu
�1/z−1

the dynamics are almost regular and the time intervals spent
in this region are distributed according to the power law as
follows:

P�l� � l−pl, �2�

with pl=
z

z−1 . Although ergodicity is a key property in the
derivation of the exact critical map, the simplified dynamics
�1� is not ergodic. Therefore it fails to describe some statis-
tical properties of the order parameter �which the exact criti-
cal map does�, such as, for example, its distribution for a
given temperature, at the level of a single trajectory �13�. On
the other hand, the simplified map �1� is much more handy
than the exact, incorporating at the same time the essential
part of the dynamics. To establish ergodicity of the simplified
map one can add a noise term �n in the right-hand side of Eq.
�1�. However, the trivial addition of noise does not lead to
dynamics capable of reproducing correctly the invariant den-
sity of the order parameter at the critical temperature. In
particular, the characteristic plateau for order parameter val-
ues just above the marginally unstable fixed point ��=0 re-
quires the use of uniformly distributed �n. Even more, in
order to avoid negative values of the order parameter, one
should modify the map �1� as follows in order to achieve a
consistent �and ergodic� dynamical description of the critical
fluctuations of the order parameter:

�n+1 = ��n + u�n
z + �n�mod 1/2, �3�

where �n is uniformly distributed in the interval �−�0 ,�0�.
The noise amplitude �0 as well as the parameter u have to be
fine tuned for the optimum reproduction of the order param-
eter distribution at the critical point. In particular, the value
of �0 has to be chosen sufficiently small in order to avoid the
deformation of the dynamics by noise but not too small in
order to avoid the violation of ergodicity. In addition, using
the optimized noise amplitude in the dynamics �3� one can
ensure that the statistics of the laminar intervals �2� remains
unaltered. Furthermore, choosing �0 and u appropriately it is

possible to reproduce the superexponential tail of the order
parameter distribution characteristic for a critical system �5�.
To illustrate this property we plot in Fig. 1�a� the invariant
density produced through a single trajectory �500 000 itera-
tions� of the map �3� using z=4 ��=3 for the isothermal
critical exponent� corresponding to the description of the or-
der parameter fluctuations of a system belonging to the wide-
spread mean field universality class. In this case using the
values u=0.011 and �0=0.0175 one can reproduce very well
the magnetization probability density of the critical system
�solid line�. The trajectory generated by �3� has as starting
value �0=0. It must be noted that the observed minor devia-
tion cannot be corrected through increasing the length of the
trajectory used in the calculation. This is due to the fact that
the map �3� is only an approximation �valid for small �
values� of the exact critical map �4�.

The calculation of the distribution ��L� of the laminar
intervals L is more complicated. The corresponding algo-
rithm has been introduced in the previous works �5,6�. How-
ever, in order to be self-contained we repeat it briefly here.
The laminar lengths L are defined as the time intervals spent
in the laminar region, i.e., the linear neighborhood of a mar-
ginally unstable fixed point. The exact size of the laminar
region is not known. Therefore it is treated as a free param-
eter in the calculation. A rough estimation of the laminar
region can be obtained from the size of the plateau in the
distribution P���. In fact we use as one end of the laminar
domain the position of the fixed point �start of the plateau�
�here �L=0� and as the other end some value of � at the
edge of the plateau ��R�. Fixing the limits �L,�R of the lami-

FIG. 1. �Color online� �a� The invariant density P��� produced
through a single trajectory of the map �3� using z=4, u=0.011, �0

=0.0175, and �0=0 �full circles�. The fitting function P̃���
=c1e−c2�c3 describes P��� for c3=4±0.11 very well. This is in re-
markable agreement with the theoretical expectation based on the
free energy of a mean field universality class critical system �5�. �b�
The distribution ��L� of the laminar intervals in a typical trajectory
of the map �3� shown using a log-log plot. The same trajectory as in
�a� is used. The solid line is the linear fit leading to the calculation
of the exponent p2 �p2�1.35±0.01�. �c� The functions p2��R� and
p3��R� calculated using a single trajectory of �3�. An increase of p3

leads to a decrease of p2 and vice versa.
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nar region we determine the distribution ��L� by calculating
the sequence of sizes of the laminar intervals L counting the
number of successive � values fulfilling the condition �R
��i��L. We use the fitting function

�̃�L� = p1L−p2e−p3L �4�

for an analytical approximation of ��L� estimating the ap-
propriate values of the fitting parameters p1, p2, and p3
through a 	2-minimization procedure. In general the expo-
nents p2 and p3 depend on the choice of �R and have a
competitive role. When p3 is decreasing p2 increases and
vice versa. The function p3��R� possesses a minimum value
at �R=�R

� approaching p3�0 while p2 becomes maximum.
Therefore for �R=�R

� the distribution of the laminar lengths
comes closer to a power law and the corresponding value of
p2 can be identified with the exponent pl in Eq. �2�. In some
cases the maximum of p2 is very broad allowing for statisti-
cal fluctuations which can be washed out by a suitable aver-
aging. It should be noted here that for a thermal critical sys-
tem the condition pl
1 �or equivalently, p2
1� has to be
fulfilled due to the fact that the exponent � is positive defi-
nite. To illustrate the above analysis in a concrete example
we show in Fig. 1�b� the distribution of laminar lengths ob-
tained through a typical trajectory of the map �3� using the
same parameters as in Fig. 1�a�. The calculation is performed
using �R=0.31. The quality of the fit measured in terms of
the coefficient of determination R2 is excellent �R2=0.999�.
The corresponding fit parameters take the values p2
=1.35±0.012, p3=0.005±0.003 compatible with a power-
law behavior of ��L�. In Fig. 1�c� we show the functions
p2��R� and p3��R� determined using the same trajectory. In
fact, as discussed above, there is a broad plateau of p2 val-
ues. Averaging over the almost constant values �in order to
suppress statistical fluctuations� leads to the mean value
�p2	�1.36, which in turn gives z�4. This result classifies
the considered dynamics in the universality of the mean field
theory �pl=1.33�.

III. DYNAMICS OF FLUCTUATIONS BEYOND THE
CRITICAL POINT

Let us now proceed to the main goal of the present work,
which is the description of the order parameter fluctuation
dynamics in an extented region around the critical point. It is
straightforward to generalize the map �3� in order to con-
struct effective dynamics incorporating the departure from
the critical point. To achieve this step we introduce the pa-
rameter r in the linear term in Eq. �3� determining the stabil-
ity properties of the fixed point at ��=0. The resulting dy-
namical law takes the form

�n+1 = �r�n + u�n
z + �n�mod 1/2. �5�

Exactly at the critical point r=1, while as we depart from it,
r increases. This change in the stability properties of the
fixed point associated with the critical point deforms also,
due to the corresponding symmetry breaking, the distribution
of the order parameter. In the mean field universality class
the Ginzburg-Landau free energy reads

���� =
1

2
u2�2 + u4�4, �6�

where u2=a0t �t=
T−Tc

Tc
� with a0
0 and u4
0. According to

Eq. �6� the probability density of the order parameter � is
given by: ����= e−����


d�e−���� . In fact this is exactly the form of
the probability density, which we obtain by evoluting the
map �5�. This is shown in Figs. 2�a�–2�c�, where we present
for three different r values �r=1, r=1.0014, and r=1.003,
respectively� the distribution of � obtained using in each
case a single trajectory with 500 000 iterations of Eq. �5� and
initial condition �0=0 �as before u=0.011 and �0=0.0175�.

The result for r=1 clearly resembles with very good ac-
curacy the order parameter probability density at the critical
point of the mean field universality class. The case r
=1.0014 corresponds to the order parameter distribution for
the phase of broken symmetry just below the mean field
critical point. Finally, when r=1.003 the corresponding �
distribution describes the cold phase with large spontaneous
magnetization. Inspired by Eq. �6� one can use the fitting
function f�x�=c exp�ax2−bx4� to describe the distributions
in Figs. 2�a�–2�c�. This can be performed for a large number
of r values in order to obtain the dependence a�r�, b�r�. The
results of this analysis are shown in Figs. 3�a� and 3�b�.

It is interesting to note that the parameter a depends lin-
early on r while the parameter b displays a saturating behav-
ior as r increases. Note that in the r dependence of the func-
tion a�r� one recognizes two regions with slightly different
slopes. The r value at the crossover corresponds to the T
value for which the initial plateau region in the density P���
disappears. These findings are in full analogy to the depen-

FIG. 2. �Color online� The distribution P��� for �a� r=1, �b� r
=1.0014, and �c� r=1.003 obtained using a single trajectory of Eq.
�5�. The solid line is the fit result using the function f�x� described
in the text.
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dence of the parameters u2, u4 of the free energy �6� on
reduced temperature t �7�. This suggests that r is proportional
to t since a=�1r+�2 while u2=

a0

2 t leading to r=1−
a0

2�1
t. Note

that, due to the minus sign, when T decreases r increases.
It must be noted that the qualitative behavior of the order

parameter distribution for temperatures just below the critical
one is the same in any thermal system undergoing a second
order transition. This is clearly seen in the example of the 3D
ferromagnetic Ising model as the temperature shrinks below
the critical one. In Figs. 4�a�–4�c� we show the distribution
of the mean magnetization for three different values of the
temperature: �a� T�Tc=4.545, �b� T=4.5, and �c� T=4.44.
The histograms are obtained through Monte Carlo simulation
using the Metropolis algorithm �1� for a lattice of size 20
2020. A single random walk consisting of 220 000 steps
is used. Spontaneous magnetization is established as the tem-
perature decreases to values less than Tc. Although the sys-
tem belongs to a different universality class �different value
of the isothermal critical exponent ��5� the similarity to the
mean field case is obvious.

In fact this similarity is more exciting at the level of the
order parameter fluctuations. In Fig. 5 we compare the dis-
tribution of the laminar intervals P�L� for the 3D Ising
model at T=4.45 with the corresponding distribution found
for the map �5� at r=1.002.

The breakdown of the power-law behavior due to the
gradual destruction of the self-similarity associated with the
critical point is the main property characterizing the fluctua-
tions of the order parameter in the subcritical region. To ob-
tain an analytical estimation of P�L� one can use the simpli-
fied form �n+1=r�n+u�n

z of the map �5�. The related
analysis is extensively given in the Appendix. The resulting
distribution is

P�L� = N
eL�z−1��r−1�

�eL�z−1��r−1��z/�z−1� − 1
, �7�

where N is a normalization constant. The function �7� be-
haves as a power law P�L��L−z/�z−1� for small values of L

�L� 1
r−1

� and decays exponentially P�L��e−L�r−1� for
L� 1

r−1 in accordance with the behavior shown in Fig. 5.
Thus the fluctuation pattern of the order parameter in the
region just below the critical temperature characterized by
the distribution �7� turns out to be a universal property of
systems undergoing a second order transition.

FIG. 3. The functions �a� a�r� and �b� b�r� obtained through the procedure described in Sec. II.

FIG. 4. �Color online� The distribution of the mean magnetiza-
tion in the 3D ferromagnetic Ising model for �a� T=4.54, �b� T
=4.5, and �c� T=4.44. The simulations are performed using the
Metropolis algorithm on a 203 lattice.
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IV. FLUCTUATION DYNAMICS OF THE
TRICRITICAL BEHAVIOR

As argued in �5,6,8� the calculation of the exponent p2
using an experimentally observable time series is straightfor-
ward and can be used for a search of signatures of critical
fluctuations in a wide class of complex systems. Such an
analysis has been extensively performed in biological �6� and
geophysical �9,8� systems. In these studies a frequently oc-
curring scenario is when the distribution P�L� obeys the law
�4� with p2�1 and p3 of the order of 0.1. This case describes
an intermediate phase between the critical power-law behav-
ior and the exponential form characterizing short range cor-
related �in time� processes. In the language of critical phe-
nomena this phase corresponds to a metastable state
associated with the appearance of tricritical behavior. For
such a system the effective action is no more scale-free de-
pending on the order parameter in a polynomial form. As we
will show below, an analogous generalization of the map �5�
captures several characteristics of the tricritical state includ-
ing the temporal fluctuations of the order parameter as de-
scribed by the distribution P�L�. For a mean field theory �z
=4� the proposed effective dynamics has the form

�n+1 = �r�n + u1�n
2 + u2�n

4 + �n�mod 1/2, �8�

where �n is the noise term while the scale invariance of the
mean field universality class is broken through the quadratic
term in �n. It is straightforward to calculate the distribution
of the sizes of the laminar intervals for the map �8�. For a
very narrow zone of r values just above r=1 and restricting
the laminar region to the immediate neighborhood of the

fixed point, the power-law characteristics in the distribution
of laminar intervals remain valid. As r is increased beyond a
critical value rc no such laminar region can be found and the
corresponding profile of P�L� although keeping the power-
law form does not possess critical characteristics any more
since we obtain p2�1. The power-law description of the
laminar interval distribution for r=1.09rc is shown in Fig.
6�a�. In fact the exact value of rc depends on the other pa-
rameters in the map �8�. For u1=1, u2=50, and noise ampli-
tude �0=0.0175 we find rc�1.15.

Per construction the lower end of the laminar region is
�L=0. For the upper end we have used �R=0.14, however,
our results are similar for a wide range of �R values provided
that �R�0.5. Fitting using the function �3� leads to p2
=0.58±0.02 and p3=0.1±0.006 in accordance with the
above discussion. Increasing r the exponent p2 decreases
while p3 increases. Thus the distribution P�L� tends rapidly
to an exponential form. This is clearly illustrated in Fig. 6�b�
where we plot P�L� for the map �8� calculated using r=1.4.
All the remaining parameters in �8�� have the same values as
in Fig. 6�a�. It is obvious that the corresponding dynamics
are weakly correlated �or even random� in time.

In order to show that the fluctuation pattern described in
Fig. 6�a�, determined by the conditions p2�1, p3�1 is as-
sociated with tricritical behavior we calculate the space av-
eraged magnetization in the Z�3� spin model where three
possible orientations of the spin vector are possible �10�.

s� ���1,0�,−
1

2
,
�3

2
�,−

1

2
,−

�3

2
�� . �9�

The different spin states are planar and form in pairs an angle
of 2�

3 . The Hamiltonian of the system is given by

H = J�
�i,j	

s�is� j , �10�

�i , j	 denoting first neighbors. At high temperature the statis-
tical weights of all three spin orientations are exactly equal.

FIG. 5. �Color online� The distribution of the laminar intervals
in the 3D Ising model for T=4.44 �a� compared with the corre-
sponding quantity calculated using the map �5� with r=1.002 �b�.
The breakdown of the power-law behavior is clearly seen.

FIG. 6. �Color online� �a� The distribution of the laminar inter-
vals calculated using the map �7� with r=1.25, u1=1, u2=50, and
�0=0.0175. �b� The distribution of the laminar intervals calculated
using the map �7� with r=1.4, u1=1, u2=50, and �0=0.0175.
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As the temperature decreases below a critical value, a narrow
zone appears within which the values of the statistical
weights fluctuate around 1/3. As the temperature decreases
further a preferred spin state emerges while the other two
states remain to be equally probable. In the fluctuation region
the system posseses the characteristics of a metastable phase
combining properties of a first and a second order transition,
namely, a tricritical behavior �7�. Using the Metropolis algo-
rithm we have calculated the mean magnetization as a func-
tion of time in the fluctuation region of the Z�3� model. In
addition we have determined the distribution P�L� of the
sizes of the time intervals spent in the linear neighborhood of

the magnetization fixed point �� �=0� . The result of the calcu-
lation is shown in Fig. 7. A Monte Carlo trajectory consisting
of 220 000 time steps �algorithmic time� on a 202020
lattice at T=2.5, below the critical Tc=2.75, is used. The fit
with the function �4� leads to p2=0.59±0.03 and p3
=0.04±0.006 in close analogy with those obtained through
the map �8� �see Fig. 6�a��.

V. CONCLUSIONS

We have developed an approximative scheme in order to
describe the order parameter fluctuations in the neighbor-
hood of a critical or a tricritical point. Our approach is based
on a previous observation �4� that the order parameter fluc-
tuations of a thermal system at the critical point possess a
deterministic component described by an intermittent map.
Here we extend the validity of this map in the entire phase
diagram region surrounding the critical point. This is
achieved by introducing a control parameter in the critical
map, which is found to be in one-to-one correspondence with
the reduced temperature in a thermal system. We also show
that in the case of a tricritical point a consistent description
of the fluctuations requires the addition of a nonlinear term
in the corresponding effective map. Using the effective dy-
namics in the broken symmetry phase we predict the exis-
tence of a distribution with universal characteristics for the
time intervals, spent in the linear neighborhood of the desta-
bilized fixed point. According to this treatment the following
picture for the collective dynamics in the critical region is

revealed: Exactly at the critical point the system passes
through ordered phases characterized by a nonvanishing
space averaged magnetization. During such a phase the mag-
netization, starting from very small absolute values, in-
creases with time as more and more spins align each other.
The fluctuations during this laminar phase are small and con-
stitute a noise effect on the dominating increasing behavior.
Whenever the absolute value of the total magnetization ex-
ceeds some threshold the corresponding configuration be-
comes extremely unstable and the system makes a sudden
transition to a new configuration with much smaller total
magnetization absolute value. During the transition phase the
fluctuations are large, practically of any size restricted only
by the size of the system. Thus, after the transition the total
magnetization sign can change. This dynamics leads to a
sequence of ordered phases with alternating total magnetiza-
tion so that the corresponding time average is zero. The time
intervals for which each ordered phase �characterized by the
regular magnetization increase� survives, are power-law dis-
tributed and the associated exponent is determined by the
isothermal critical exponent �. As the state of the system
departs slightly from the critical one, a similar scenario
holds. The main difference is the appearance of an exponen-
tially decaying factor in the distribution of the laminar
lengths, reflecting the breaking of scale invariance in the
effective action of the system. Thus, near to the critical point
the laminar length distribution is a product of a power-law
and an exponential term. The same form applies also for a
system near a tricritical point. However, the first order char-
acteristics present in this case lead to a reduction of the fluc-
tuations expressed through a decrease of the exponent in the
power-law factor. Although the described statistical proper-
ties of the laminar length distribution are extracted through
the fictitious dynamics of the Monte Carlo simulation of the
3D Ising and Z�3� model they provide a reasonable scenario
for the statistical characteristics of the system evolution in
the critical region. Furthermore, the underlying intermittent
dynamics derived from these statistical properties, are com-
patible with the changes in the stability properties of the
ground state �due to spontaneous symmetry breaking� during
the phase transition.
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APPENDIX

Following the standard approach �11� it is straightforward
to estimate the distribution of the sizes of the deformed lami-
nar intervals for the map xn+1=rxn+uxn

z . In the limit r→1
one obtains approximately the following differential equa-
tion:

dx

dL
= �r − 1�x + uxz. �A1�

Integrating Eq. �A1� we find

FIG. 7. �Color online� The distribution of the laminar intervals
for the Z�3� spin model calculated using a 202020 lattice at
T=2.5.
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�
0

l

dL = �
x0

c dx

�r − 1�x + uxz = �
x0

c dx

x��r − 1� + uxz−1�
,

which after the transformation x→y1/z−1 becomes

L =
1

z − 1
�

x0
z−1

c� dy

y��r − 1� + uy�

=
1

�z − 1��r − 1���x0
z−1

c� dy

y
− u�

x0
z−1

c� dy

�r − 1� + uy�
=

1

�z − 1��r − 1�
ln� �r − 1� + ux0

z−1

x0
z−1

c�

c2
�

leading finally to

L =
1

�z − 1��r − 1��ln
�r − 1� + ux0

z−1

x0
z−1 + k�, k = ln

c�

c2
,

�A2�

where the parameter c� is determined by the initial change of
variables and the parameter c2 is obtained after the last inte-
gration.

The distribution of laminar lengths is given as �11�

P�L� � � dx0

dL � . �A3�

The derivative �
dx0

dL � can be found using Eq. �A2�.

�r − 1� + ux0
z−1

x0
z−1 = eL�z−1��r−1�−k,

r − 1

x0
z−1 = eL�z−1��r−1�−k − u ,

x0 =  r − 1

eL�z−1��r−1�−k − u
�1/�z−1�

,

leading to the result

� dx0

dL � = A
eL�z−1��r−1�

�eL�z−1��r−1� − u��z/�z−1� , �A4�

where the parameter A is independent from L and u�=uek.
Without loss of generality we can put u��1 getting finally

P�L� �
eL�z−1��r−1�

�eL�z−1��r−1� − 1�z/�z−1� . �A5�
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